1. 读取数据集
2. 训练集与测试集划分
3. 线性回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。
4. 多项式回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。
5. 比较线性模型与非线性模型的性能,并说明原因。
# 多元线性回归模型from sklearn.datasets import load_bostonfrom sklearn.model_selection import train_test_split# 波士顿房价数据集data = load_boston()# 划分数据集x_train, x_test, y_train, y_test = train_test_split(data.data,data.target,test_size=0.3)# 建立线性回归模型from sklearn.linear_model import LinearRegressionbos_lg = LinearRegression()bos_lg.fit(x_train,y_train)print('系数',bos_lg.coef_,"\n截距",bos_lg.intercept_)# 检测模型好坏from sklearn.metrics import regressiony_predict = bos_lg.predict(x_test)# 计算模型的预测指标print("预测的均方误差:", regression.mean_squared_error(y_test,y_predict))print("预测的平均绝对误差:", regression.mean_absolute_error(y_test,y_predict))# 打印模型的分数print("模型的分数:",bos_lg.score(x_test, y_test))print('=================\n')# 多元多项式回归模型# 多项式化from sklearn.preprocessing import PolynomialFeaturespoly2 = PolynomialFeatures(degree=2)x_poly_train = poly2.fit_transform(x_train)x_poly_test = poly2.transform(x_test)# 建立模型bos_lgp = LinearRegression()bos_lgp.fit(x_poly_train, y_train)# 预测y_predict2 = bos_lgp.predict(x_poly_test)# 检测模型好坏# 计算模型的预测指标print("预测的均方误差:", regression.mean_squared_error(y_test,y_predict2))print("预测的平均绝对误差:", regression.mean_absolute_error(y_test,y_predict2))# 打印模型的分数print("模型的分数:",bos_lgp.score(x_poly_test, y_test))
二、中文文本分类
按学号未位下载相应数据集。
147:财经、彩票、房产、股票、
258:家居、教育、科技、社会、时尚、
0369:时政、体育、星座、游戏、娱乐
分别建立中文文本分类模型,实现对文本的分类。基本步骤如下:
1.各种获取文件,写文件
2.除去噪声,如:格式转换,去掉符号,整体规范化
3.遍历每个个文件夹下的每个文本文件。
4.使用jieba分词将中文文本切割。
中文分词就是将一句话拆分为各个词语,因为中文分词在不同的语境中歧义较大,所以分词极其重要。
可以用jieba.add_word('word')增加词,用jieba.load_userdict('wordDict.txt')导入词库。
维护自定义词库
5.去掉停用词。
维护停用词表
6.对处理之后的文本开始用TF-IDF算法进行单词权值的计算
7.贝叶斯预测种类
8.模型评价
9.新文本类别预测
模型
import jiebafrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.model_selection import train_test_splitfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.linear_model import LinearRegressionfrom myThread import my_mainimport collectionsimport matplotlib.pyplot as pltfrom pylab import mplmpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体'''def get_data(): data = [] stopword = get_stopword() label = [] for i in range(644580,644602):#股票 file = "d:/data/147/temp/股票/"+str(i)+".txt" with open(file,'r',encoding='utf-8') as f: news = f.read() this_news = "" for ci in jieba.cut(news): if ci not in stopword: this_news = this_news+ci+" " data.append(this_news) label.append('股票') for i in range(264410,264429):#房产 file = "d:/data/147/temp/房产/" + str(i) + ".txt" with open(file, 'r', encoding='utf-8') as f: news = f.read() this_news = "" for ci in jieba.cut(news): if ci not in stopword: this_news = this_news + ci + " " data.append(this_news) label.append('房产') for i in range(256822,256843):#彩票 file = "d:/data/147/temp/彩票/" + str(i) + ".txt" with open(file, 'r', encoding='utf-8') as f: news = f.read() this_news = "" for ci in jieba.cut(news): if ci not in stopword: this_news = this_news + ci + " " data.append(this_news) label.append('彩票') for i in range(798977,798999):#财经 file = "d:/data/147/temp/财经/" + str(i) + ".txt" with open(file, 'r', encoding='utf-8') as f: news = f.read() this_news = "" for ci in jieba.cut(news): if ci not in stopword: this_news = this_news + ci + " " data.append(this_news) label.append('财经') return data,labeldef get_stopword(): #加载停用词表 stopwords = [line.strip() for line in open('stopword.txt', 'r',encoding='utf-8').readlines()] stopwords.append('\u3000') stopwords.append('\n') return stopwords'''def xiangliang(x_train,x_test): # 向量化 from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), strip_accents='unicode') # ,norm='12' x_train = vectorizer.fit_transform(x_train) x_test = vectorizer.transform(x_test) return x_train, x_test, vectorizerdef beiNB(x_train, y_train,x_test): # 朴素贝叶斯分类器 clf = MultinomialNB().fit(x_train, y_train) y_nb_pred = clf.predict(x_test) return y_nb_pred,clfdef result(vectorizer,clf): # 分类结果 from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report print('====================shape') print(y_nb_pred.shape, y_nb_pred) print('nb_confusion_matrix:') cm = confusion_matrix(y_test, y_nb_pred) print(cm) cr = classification_report(y_test, y_nb_pred) print(cr) feature_names = vectorizer.get_feature_names() coefs = clf.coef_ intercept = clf.intercept_ coefs_with_fns = sorted(zip(coefs[0], feature_names)) n = 10 top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1]) print('=================coef') for (coef_1, fn_1), (coef_2, fn_2) in top: print('\t%.4f\t%-15s\t\t%.4f\t%-15s' % (coef_1, fn_1, coef_2, fn_2))if __name__ == '__main__': data,label = my_main() print(len(data)) print(label,len(label)) x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.3, random_state=0,stratify=label) X_train, X_test, vectorizer = xiangliang(x_train, x_test) y_nb_pred, clf = beiNB(X_train, y_train, X_test) result(vectorizer, clf) plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 # 统计测试集和预测集的各类新闻个数 testCount = collections.Counter(y_test) predCount = collections.Counter(y_nb_pred) print('实际:', testCount, '\n', '预测', predCount) # 建立标签列表,实际结果列表,预测结果列表, nameList = list(testCount.keys()) testList = list(testCount.values()) predictList = list(predCount.values()) x = list(range(len(nameList))) print("新闻类别:", nameList, '\n', "实际:", testList, '\n', "预测:", predictList) # 画图 plt.figure(figsize=(7, 5)) total_width, n = 0.6, 2 width = total_width / n plt.bar(x, testList, width=width, label='实际', fc='g') for i in range(len(x)): x[i] = x[i] + width plt.bar(x, predictList, width=width, label='预测', tick_label=nameList, fc='b') plt.grid() plt.title('实际和预测对比图', fontsize=17) plt.xlabel('新闻类别', fontsize=17) plt.ylabel('频数', fontsize=17) plt.legend(fontsize=17) plt.tick_params(labelsize=15) plt.show()
mythread.py
import jieba import threading#from nlt_cut import get_stopword,xiangliang,beiNB,resultfrom sklearn.model_selection import train_test_splitimport numpy as npclass myThread(threading.Thread): '''读取文件的线程类''' def __init__(self,threadID,name,start_number,end_number): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.start_number = start_number self.end_number = end_number def run(self): print('读取文件开始:'+self.name) read_txt(self.name,self.start_number,self.end_number) print('读取文件结束'+self.name)def get_stopword(): '''加载停用词表''' stopwords = [line.strip() for line in open('stopword.txt', 'r',encoding='utf-8').readlines()] stopwords.append('\u3000') stopwords.append('\n') return stopwordsdata = []label = []stopword = get_stopword()def read_txt(threadName,start_number,end_number): for i in range(start_number,end_number): file = "d:/data/147//147/"+threadName+"/"+str(i)+".txt" with open(file,'r',encoding='utf-8') as f: news = f.read() this_news = "" for ci in jieba.cut(news): if ci not in stopword: this_news = this_news+ci+" " data.append(this_news) label.append(threadName)def get_data(): return data,labeldef my_new_thread(): '''thread1 = myThread(1, '财经', 798977, 836075) thread2 = myThread(2, '彩票', 256822, 264410) thread3 = myThread(3, '房产', 264410, 284460) thread4 = myThread(4, '股票', 644579, 798977)''' thread1 = myThread(1, '财经', 798977, 810000) thread2 = myThread(2, '彩票', 256822, 260000) thread3 = myThread(3, '房产', 264410, 270000) thread4 = myThread(4, '股票', 644579, 700000) thread5 = myThread(5, '财经', 810000, 836075) thread6 = myThread(6, '彩票', 260000, 264410) thread7 = myThread(7, '房产', 270000, 284460) thread8 = myThread(8, '股票', 700000, 750000) thread9 = myThread(9, '股票', 750000, 798977) thread1.start() thread2.start() thread3.start() thread4.start() thread5.start() thread6.start() thread7.start() thread8.start() thread9.start() threads = [thread1,thread2,thread3,thread4,thread6,thread5,thread7,thread8,thread9] for t in threads: t.join() print('退出线程')def my_main(): my_new_thread() data, label = get_data() return data,label'''if __name__ == '__main__': my_new_thread() data, label = get_data() np.save("d:/data.npy",np.array(data)) np.save("d:/label.npy", np.array(label)) print("=======================") x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.3, random_state=0, stratify=label) X_train, X_test, vectorizer = xiangliang(x_train, x_test) y_nb_pred, clf = beiNB(X_train, y_train, X_test) result(vectorizer, clf,y_nb_pred)'''